Coincidence Quasi-Best Proximity Points for Quasi-Cyclic-Noncyclic Mappings in Convex Metric Spaces
Authors
Abstract:
We introduce the notion of quasi-cyclic-noncyclic pair and its relevant new notion of coincidence quasi-best proximity points in a convex metric space. In this way we generalize the notion of coincidence-best proximity point already introduced by M. Gabeleh et al cite{Gabeleh}. It turns out that under some circumstances this new class of mappings contains the class of cyclic-noncyclic mappings as a subclass. The existence and convergence of coincidence-best and coincidence quasi-best proximity points in the setting of convex metric spaces are investigated.
similar resources
On best proximity points for multivalued cyclic $F$-contraction mappings
In this paper, we establish and prove the existence of best proximity points for multivalued cyclic $F$- contraction mappings in complete metric spaces. Our results improve and extend various results in literature.
full textQuasi-contractive Mappings in Fuzzy Metric Spaces
We consider the concept of fuzzy quasi-contractions initiated by '{C}iri'{c} in the setting of fuzzy metric spaces and establish fixed point theorems for quasi-contractive mappings and for fuzzy $mathcal{H}$-contractive mappings on M-complete fuzzy metric spaces in the sense of George and Veeramani.The results are illustrated by a representative example.
full textOn Best Proximity Points in metric and Banach spaces
Notice that best proximity point results have been studied to find necessaryconditions such that the minimization problemminx∈A∪Bd(x,Tx)has at least one solution, where T is a cyclic mapping defined on A∪B.A point p ∈ A∪B is a best proximity point for T if and only if thatis a solution of the minimization problem (2.1). Let (A,B) be a nonemptypair in a normed...
full textOn Optimal Fuzzy Best Proximity Coincidence Points of Proximal Contractions Involving Cyclic Mappings in Non-Archimedean Fuzzy Metric Spaces
The main objective of this paper is to deal with some properties of interest in two types of fuzzy ordered proximal contractions of cyclic self-mappings T integrated in a pair (g, T) of mappings. In particular, g is a non-contractive fuzzy self-mapping, in the framework of non-Archimedean ordered fuzzy complete metric spaces and T is a p-cyclic proximal contraction. Two types of such contractio...
full textBest Proximity Pair Theorems for Noncyclic Mappings in Banach and Metric Spaces
Let A and B be two nonempty subsets of a metric space X. A mapping T : A∪B → A∪B is said to be noncyclic if T (A) ⊆ A and T (B) ⊆ B. For such a mapping, a pair (x, y) ∈ A×B such that Tx = x, Ty = y and d(x, y) = dist(A,B) is called a best proximity pair. In this paper we give some best proximity pair results for noncyclic mappings under certain contractive conditions.
full textConvergence theorems for common fixed points of asymptotically quasi-nonexpansive mappings in convex metric spaces
Keywords: Implicit iterative algorithm Asymptotically quasi-nonexpansive mappings Common fixed point Convex metric space a b s t r a c t In this paper, we consider an implicit iteration process to approximate the common fixed points of two finite families of asymptotically quasi-nonexpansive mappings in convex metric spaces. As a consequence of our result, we obtain some related convergence the...
full textMy Resources
Journal title
volume 17 issue 1
pages 27- 46
publication date 2022-04
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023